

NEW ZEALAND BIO-FORESTRY BUSH TO BOTTLE

Prepared by Matt and Tane

TODAY'S PRESENTATION

OUTLINE OF TOPICS

Background Project Scope Integrated Site **Building The Model Going Forward** Abacus Experience

BUSH TO BOTTLE BACKGROUND

NEW ZEALAND'S ANNUAL WASTE

2,500,000 TONNE **FOREST RESIDUE**

250,000 TONNE PLASTIC

WHOLE LOG APPROACH THE SOLUTION

INTERGRATED ENTERPRISE

PROCESS FLOW SIMPLE STAGE MODEL

PROJECT SCOPE The importance of

WHO

NZ Bio-Forestry AbacusBio Massey University Māori Partners INER Hoomankind

WHAT

Whole Log Approach Integrated Site Integrated Processes Adaptable Bio-Financial Model Research

Zero-waste Efficiency Bio-Plastics market Tikanga Kotahitanga

INTEGRATED SITE SITE SECTIONS

SHARED OPERATIONS

Facilities that are shared by all partners in the site.

PLYWOOD PLANT

First manufacturing stage Creates high-value plywood for export Includes Debarking

BIOREFINERY

The process of converting woodchips to Bioplastic building blocks

INTEGRATED SITE BENEFITS

LOGISTICS

Eliminates transport costs at each stage. Decreases delays, handling issues, storage needs

CHP PLANT

Provides an opportunity to use waste to power both plants and create process heat/steam for use in Ply and Refinery processes.

EXPANSION

This site will offer future opportunities to expand to a full scale biorefinery and expand presence in bioplastics industry

BUILDING THE MODEL

DESIGN AND INTEGRATION

BUILDING THE MODEL

- Identify key problem areas 'what can kill this project?'
- Make educated assumptions based on research
- Outline full flow of processes from log arriving to different end-markets
- Identify certain, semi-certain and uncertain stages/markets
- Create fully adaptable/dynamic spreadsheet to model both financial and biological aspects of the project

BUILDING THE MODEL

ASSUMPTIONS

- Throughput
- Inputs (composition, Moisture Content)
- Pretreatment Method
- Power/Heat Demand
- Plywood Yields
- Lactic Acid Yields
- Enzyme/Microbe Use

PROBLEM AREAS

- Sugar Breakdown
- Log Composition
- Misinformation
- Plywood Weight
- Creating Formula
- Making Model dynamic/adaptable
- Handling/Storage Issues
- Power/Heat
- Microbes/Enzymes

Certain

Developing

Uncertain

CONCEPT LAYOUT

WHAT WE HAVE Accomplished

Research

Dynamic Model

Reports

GOING FORWARD

MICROBES

Continue to work with the University of Otago to develop microbes for fermentation. Use new reliable yields in the model, scaling up.

ADDING EXPERTISE

Look to bring in people more suitable to the individual aspects. (Engineers, Ply Manufacturers etc)

COMPLETION/IMPLEMENTATION Use continuing research and ideas to update and improve the model

